MTH 301 Final Solutions

1. (a) Show that the cycles (123) and (132) are not conjugate in A_{4}.
(b) Verify that the Class Equation for A_{4} has the form

$$
12=1+3+4+4 .
$$

Solution. (a) The elements of A_{4} may be enumerated as
$\{(1),(123),(124),(132),(134),(142),(143),(234),(243),(12)(34),(13)(24),(14)(23)\}$
By a direct computation, one can see that the conjugacy class of the cycle (123) is

$$
\{(123),(243),(142),(134)\} .
$$

Hence, the cycles (123) and (132) are not conjugate.
(b) Noting that conjugate elements in S_{n} have the same partition type, a simple computation reveals that A_{4} has 3 other conjugacy classes, which are:

$$
\{(1)\},\{(12)(34),(13)(24),(14)(23)\} \text { and }\{(132),(124),(143),(234)\} .
$$

As the conjugacy class representatives (123) and (132) do not commute with the representative (12)(34) we see that $Z(G)=\{(1)\}$. Hence, the class equation for A_{4} takes the form

$$
12=1+3+4+4 .
$$

2. For distinct primes p and q, show that a group of order $p^{2} q$ is not simple.
Solution. Let G be a group of order $p^{2} q$. By the First Sylow Theorem, G has subgroups of orders p, p^{2} and q. Suppose that $p>q$. Then a subgroup H of order p^{2} has index q in G, and hence $H \unlhd G$, which proves that G is not simple.

Suppose that $p<q$. The Third Sylow Theorem implies that

$$
\begin{array}{cc}
n_{p} \equiv 1 & (\bmod p) \text { and } n_{p} \mid q \\
n_{q} \equiv 1 & (\bmod q) \text { and } n_{q} \mid p^{2} \tag{2}
\end{array}
$$

From (2) above, we see that for some integer $k, q k+1 \mid p^{2}$, which would imply that $q \mid p^{2}-1$. Since q is prime and $p<q$, we have $q \mid p+1$ or $q=p+1$. Hence, $p=2$ and $q=3$ and $|G|=12$. The result now follows from the fact that a group of order 12 is non-simple.
3. Let G be a group of order 231 . Show that G has a subgroup subgroup H of order 11 such that $H \leq Z(G)$.

Solution. The First Sylow Theorem would imply that G has a subgroup H of order 11, while the Third Sylow Theorem would yield

$$
n_{11} \equiv 1 \quad(\bmod 11) \text { and } n_{11} \mid 21 .
$$

Hence $n_{11}=1$, or in other words, H is the unique Sylow-11 subgroup of G, and so $H \unlhd G$.
Now consider the action $G \curvearrowright^{c} H$. This induces a permutation representation

$$
\psi_{c}: G \rightarrow \operatorname{Aut}(H)
$$

with $\operatorname{Ker} \psi_{c}=C_{G}(H)$. Since $H \cong Z_{11}$, we have

$$
|\operatorname{Aut}(H)|=\left|U_{11}\right|=10
$$

Hence, $\left|G / C_{G}(H)\right| \mid 10$, which would imply that $\left|G / C_{G}(H)\right|=1$. Therefore, $C_{G}(H)=G$, that is, $H \leq Z(G)$.
4. Find up to isomorphism:
(a) The number of distinct abelian groups of order 144.
(b) Three non-abelian groups of order 30 .

Solution. (a) Up to isomorphism, there are 10 distinct abelian groups of order 144, and they are:
(1) $\mathbb{Z}_{16} \times \mathbb{Z}_{9}$
(2) $\mathbb{Z}_{48} \times \mathbb{Z}_{3}$
(3) $\mathbb{Z}_{36} \times \mathbb{Z}_{4}$
(4) $\mathbb{Z}_{12} \times \mathbb{Z}_{12}$
(5) $\mathbb{Z}_{2} \times \mathbb{Z}_{72}$
(6) $\mathbb{Z}_{6} \times \mathbb{Z}_{24}$
(7) $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{36}$
(8) $\mathbb{Z}_{2} \times \mathbb{Z}_{6} \times \mathbb{Z}_{12}$
(9) $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{18}$
(10) $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{6} \times \mathbb{Z}_{6}$
(b) Three non-abelian groups of order 30 are: $D_{30}, S_{3} \times \mathbb{Z}_{5}$, and $D_{10} \times \mathbb{Z}_{3}$. It is left as an exercise to show that these groups are non-isomorphic. In fact, these are the only non-abelian groups of order 30 up to isomorphism.
5. Without using the Feit-Thompson theorem, show that the following statements are equivalent.
(i) Every group of odd-order is solvable.
(ii) The only simple groups of odd order are of prime order.

Solution. (\Longrightarrow) Suppose that every group of odd order is solvable. Let G be a simple group of odd order. By our assumption, G has to be solvable. As G has no proper normal subgroups, G has to be abelian. The Classification Theorem of finite abelian groups would now imply that G has to be of prime order.
(\Longleftarrow) Suppose that the simple groups of odd order are those of prime order. Let H be a group of odd order. If H is simple, then our hypothesis would imply that H is of prime order, and hence solvable. On the contrary, if H is not simple, then let

$$
1=H_{0} \unlhd H_{1} \unlhd H_{2} \unlhd \ldots \unlhd H_{k}=H
$$

be a composition series for H. Each factor group H_{i+1} / H_{i} is a simple group of odd order, and so our hypothesis would imply that it is abelian of prime order. Thus, we have a normal series for H in which each factor group is abelian. Therefore, H is solvable.
6. For positive integers m and n such that $n \mid m$, consider the map

$$
\varphi(m, n): U_{m} \rightarrow U_{n}:[x]_{m} \xrightarrow{\varphi(m, n)}[x]_{n} .
$$

(a) Show that $\varphi(m, n)$ is a well-defined homomorphism.
(b) Find $\operatorname{Ker} \varphi(36,12)$ and $\operatorname{Im} \varphi(36,12)$.

Solution. (a) The map $\varphi(m, n)$ is well-defined, for if $[x]_{m}=[y]_{m}$, then

$$
m|x-y \Longrightarrow n| x-y \Longrightarrow[x]_{n}=[y]_{n} .
$$

Furthermore, $\varphi(m, n)$ is a homorphism, because

$$
\begin{aligned}
\varphi(m, n)\left([x]_{m}[y]_{m}\right) & =\varphi(m, n)\left([x y]_{m}\right) \\
& =[x y]_{n} \\
& =[x]_{n}[y]_{n} \\
& =\varphi(m, n)\left([x]_{m}\right) \varphi(m, n)\left([x]_{m}\right) .
\end{aligned}
$$

(b) Since for any positive integer $n, \operatorname{gcd}(n, 12)=1 \Longrightarrow \operatorname{gcd}(n, 36)=1$, we have that $\varphi(36,12)$ is surjective. Hence, $\operatorname{Im} \varphi(36,12)=U_{12}$. Moreover, $\operatorname{Ker} \varphi(36,12)$ comprises all elements in U_{36} that are congruent to 1 modulo 12 , and these are precisely, $\{[1],[13],[25]\}$. Note that $\operatorname{Ker} \varphi(36,12) \cong \mathbb{Z}_{3}$.
7. Show that $\operatorname{Aut}\left(D_{8}\right) \cong D_{8}$. [Hint: First, use the fact that an automorphism preserves order of an element to show that $\left|\operatorname{Aut}\left(D_{8}\right)\right| \leq 8$. Then realizing that $D_{8} \leq D_{16}$, consider the action $D_{16} \curvearrowright^{c} D_{8}$.]
Solution. From class, we know $D_{8}=\langle r, s\rangle$, where $o(r)=4$ and $o(s)=$ 2. Hence, any $\varphi \in \operatorname{Aut}\left(D_{8}\right)$ is completely determined by $\varphi(r)$ and $\varphi(s)$. Furthermore, as isomorphisms preserve order, we have that $o(\varphi(r))=4$ and $o(\varphi(s))=2$. So $\varphi(r) \in\left\{r, r^{3}\right\}$ and $\varphi(s) \in\left\{s, s r, s r^{2}, s r^{3}\right\}$, which shows that $\left|\operatorname{Aut}\left(D_{8}\right)\right| \leq 8$.
The subgroup $\left\langle r^{2}, s\right\rangle$ of D_{16} is isomorphic to D_{8} (why?), and furthermore as $\left[D_{16}: D_{8}\right]=2$, we have $D_{8} \unlhd D_{16}$. Consider the action $D_{16} \curvearrowright^{c} D_{8}$, and the induced permutation representation

$$
\psi_{c}: D_{16} \rightarrow \operatorname{Aut}\left(D_{8}\right)
$$

with $\operatorname{Ker} \psi_{c}=C_{D_{16}}\left(D_{8}\right)$. Note that $C_{D_{16}}\left(D_{8}\right)=\left\{1, r^{4}\right\}$, as these are the only elements of D_{16} that commute with both r^{2} and s. Thus the action

$$
\operatorname{Aut}\left(D_{8}\right) \cong D_{16} /\left\{1, r^{4}\right\} \cong D_{8}
$$

as there is a surjective homomorphism

$$
\gamma: D_{16} \rightarrow D_{8}
$$

with $\operatorname{Ker} \gamma=\left\{1, r^{4}\right\}$. (What is γ ?)

