
MTH 301 Final Solutions

1. (a) Show that the cycles (1 2 3) and (1 3 2) are not conjugate in A4.

(b) Verify that the Class Equation for A4 has the form

12 = 1 + 3 + 4 + 4.

Solution. (a) The elements of A4 may be enumerated as

{(1), (123), (124), (132), (134), (142), (143), (234), (243), (12)(34), (13)(24), (14)(23)}

By a direct computation, one can see that the conjugacy class of the
cycle (123) is

{(123), (243), (142), (134)}.
Hence, the cycles (123) and (132) are not conjugate.

(b) Noting that conjugate elements in Sn have the same partition type,
a simple computation reveals that A4 has 3 other conjugacy classes,
which are:

{(1)}, {(12)(34), (13)(24), (14)(23)} and {(132), (124), (143), (234)}.

As the conjugacy class representatives (123) and (132) do not commute
with the representative (12)(34) we see that Z(G) = {(1)}. Hence, the
class equation for A4 takes the form

12 = 1 + 3 + 4 + 4.

2. For distinct primes p and q, show that a group of order p2q is not
simple.

Solution. Let G be a group of order p2q. By the First Sylow Theorem,
G has subgroups of orders p, p2 and q. Suppose that p > q. Then a
subgroup H of order p2 has index q in G, and hence H E G, which
proves that G is not simple.

Suppose that p < q. The Third Sylow Theorem implies that

np ≡ 1 (mod p) and np | q (1)

nq ≡ 1 (mod q) and nq | p2 (2)

From (2) above, we see that for some integer k, qk+1 | p2, which would
imply that q | p2 − 1. Since q is prime and p < q, we have q | p + 1
or q = p + 1. Hence, p = 2 and q = 3 and |G| = 12. The result now
follows from the fact that a group of order 12 is non-simple.
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3. Let G be a group of order 231. Show that G has a subgroup subgroup
H of order 11 such that H ≤ Z(G).

Solution. The First Sylow Theorem would imply that G has a sub-
group H of order 11, while the Third Sylow Theorem would yield

n11 ≡ 1 (mod 11) and n11 | 21.

Hence n11 = 1, or in other words, H is the unique Sylow-11 subgroup
of G, and so H EG.

Now consider the action G yc H. This induces a permutation repre-
sentation

ψc : G→ Aut(H)

with Kerψc = CG(H). Since H ∼= Z11, we have

|Aut(H)| = |U11| = 10.

Hence, |G/CG(H)| | 10, which would imply that |G/CG(H)| = 1.
Therefore, CG(H) = G, that is, H ≤ Z(G).

4. Find up to isomorphism:

(a) The number of distinct abelian groups of order 144.

(b) Three non-abelian groups of order 30.

Solution. (a) Up to isomorphism, there are 10 distinct abelian groups
of order 144, and they are:

(1) Z16 × Z9

(2) Z48 × Z3

(3) Z36 × Z4

(4) Z12 × Z12

(5) Z2 × Z72

(6) Z6 × Z24

(7) Z2 × Z2 × Z36

(8) Z2 × Z6 × Z12

(9) Z2 × Z2 × Z2 × Z18

(10) Z2 × Z2 × Z6 × Z6
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(b) Three non-abelian groups of order 30 are: D30, S3×Z5, andD10×Z3.
It is left as an exercise to show that these groups are non-isomorphic.
In fact, these are the only non-abelian groups of order 30 up to isomor-
phism.

5. Without using the Feit-Thompson theorem, show that the following
statements are equivalent.

(i) Every group of odd-order is solvable.

(ii) The only simple groups of odd order are of prime order.

Solution. ( =⇒ ) Suppose that every group of odd order is solvable.
Let G be a simple group of odd order. By our assumption, G has to be
solvable. As G has no proper normal subgroups, G has to be abelian.
The Classification Theorem of finite abelian groups would now imply
that G has to be of prime order.

(⇐= ) Suppose that the simple groups of odd order are those of prime
order. Let H be a group of odd order. If H is simple, then our hypoth-
esis would imply that H is of prime order, and hence solvable. On the
contrary, if H is not simple, then let

1 = H0 EH1 EH2 E . . .EHk = H

be a composition series for H. Each factor group Hi+1/Hi is a simple
group of odd order, and so our hypothesis would imply that it is abelian
of prime order. Thus, we have a normal series forH in which each factor
group is abelian. Therefore, H is solvable.

6. For positive integers m and n such that n | m, consider the map

ϕ(m,n) : Um → Un : [x]m
ϕ(m,n)7−−−−→ [x]n.

(a) Show that ϕ(m,n) is a well-defined homomorphism.

(b) Find Kerϕ(36, 12) and Imϕ(36, 12).

Solution. (a) The map ϕ(m,n) is well-defined, for if [x]m = [y]m,
then

m | x− y =⇒ n | x− y =⇒ [x]n = [y]n.

Furthermore, ϕ(m,n) is a homorphism, because

ϕ(m,n)([x]m[y]m) = ϕ(m,n)([xy]m)

= [xy]n

= [x]n[y]n

= ϕ(m,n)([x]m)ϕ(m,n)([x]m).
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(b) Since for any positive integer n, gcd(n, 12) = 1 =⇒ gcd(n, 36) = 1,
we have that ϕ(36, 12) is surjective. Hence, Imϕ(36, 12) = U12. More-
over, Kerϕ(36, 12) comprises all elements in U36 that are congruent
to 1 modulo 12, and these are precisely, {[1], [13], [25]}. Note that
Kerϕ(36, 12) ∼= Z3.

7. Show that Aut(D8) ∼= D8. [Hint: First, use the fact that an automor-
phism preserves order of an element to show that |Aut(D8)| ≤ 8. Then
realizing that D8 ≤ D16, consider the action D16 yc D8.]

Solution. From class, we know D8 = 〈r, s〉, where o(r) = 4 and o(s) =
2. Hence, any ϕ ∈ Aut(D8) is completely determined by ϕ(r) and ϕ(s).
Furthermore, as isomorphisms preserve order, we have that o(ϕ(r)) = 4
and o(ϕ(s)) = 2. So ϕ(r) ∈ {r, r3} and ϕ(s) ∈ {s, sr, sr2, sr3}, which
shows that |Aut(D8)| ≤ 8.

The subgroup 〈r2, s〉 of D16 is isomorphic to D8 (why?), and further-
more as [D16 : D8] = 2, we have D8 E D16. Consider the action
D16 yc D8, and the induced permutation representation

ψc : D16 → Aut(D8)

with Kerψc = CD16(D8). Note that CD16(D8) = {1, r4}, as these are
the only elements of D16 that commute with both r2 and s. Thus the
action

Aut(D8) ∼= D16/{1, r4} ∼= D8,

as there is a surjective homomorphism

γ : D16 → D8

with Ker γ = {1, r4}. (What is γ?)
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