MTH 301 Final Solutions

1.

(a) Show that the cycles (123) and (132) are not conjugate in Ay.
(b) Verify that the Class Equation for A4 has the form

12=1+3+4+4.

Solution. (a) The elements of A, may be enumerated as
{(1),(123), (124), (132), (134), (142), (143), (234), (243), (12)(34), (13)(24), (14)(23) }

By a direct computation, one can see that the conjugacy class of the
cycle (123) is
{(123), (243), (142), (134)}.

Hence, the cycles (123) and (132) are not conjugate.

(b) Noting that conjugate elements in S,, have the same partition type,
a simple computation reveals that A, has 3 other conjugacy classes,
which are:

(1)}, {(12)(34), (13)(24), (14)(23)} and {(132), (124), (143), (234)}.

As the conjugacy class representatives (123) and (132) do not commute
with the representative (12)(34) we see that Z(G) = {(1)}. Hence, the
class equation for A, takes the form

12=1+3+4+4.

For distinct primes p and ¢, show that a group of order p?q is not
simple.

Solution. Let G be a group of order p?q. By the First Sylow Theorem,
G has subgroups of orders p, p* and ¢q. Suppose that p > ¢. Then a
subgroup H of order p? has index ¢ in G, and hence H < G, which
proves that G is not simple.

Suppose that p < ¢. The Third Sylow Theorem implies that
n, =1 (mod p)and n, | ¢ (1)
ny=1 (mod g) and n, | p* (2)
From (2) above, we see that for some integer k, gk +1 | p?, which would
imply that ¢ | p? — 1. Since ¢ is prime and p < ¢, we have ¢ | p+ 1

or g =p-+ 1. Hence, p =2 and ¢ = 3 and |G| = 12. The result now
follows from the fact that a group of order 12 is non-simple.
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3. Let G be a group of order 231. Show that G has a subgroup subgroup
H of order 11 such that H < Z(G).

Solution. The First Sylow Theorem would imply that G has a sub-
group H of order 11, while the Third Sylow Theorem would yield

niy =1 (mod 11) and nqq | 21.

Hence nqy; = 1, or in other words, H is the unique Sylow-11 subgroup
of G, and so H < G.

Now consider the action G ~¢ H. This induces a permutation repre-
sentation

e : G — Aut(H)
with Ker ¢, = Cg(H). Since H & Z3;, we have

Hence, |G/Cq(H)| | 10, which would imply that |G/Cq(H)| = 1.
Therefore, Co(H) = G, that is, H < Z(G).

4. Find up to isomorphism:

(a) The number of distinct abelian groups of order 144.
(b) Three non-abelian groups of order 30.

Solution. (a) Up to isomorphism, there are 10 distinct abelian groups
of order 144, and they are:



(b) Three non-abelian groups of order 30 are: Dsg, S3XZs, and Dy X Zs.
It is left as an exercise to show that these groups are non-isomorphic.
In fact, these are the only non-abelian groups of order 30 up to isomor-
phism.

5. Without using the Feit-Thompson theorem, show that the following
statements are equivalent.

(i) Every group of odd-order is solvable.

(ii) The only simple groups of odd order are of prime order.

Solution. ( = ) Suppose that every group of odd order is solvable.
Let G be a simple group of odd order. By our assumption, G has to be
solvable. As G has no proper normal subgroups, G has to be abelian.
The Classification Theorem of finite abelian groups would now imply
that G has to be of prime order.

( <) Suppose that the simple groups of odd order are those of prime
order. Let H be a group of odd order. If H is simple, then our hypoth-
esis would imply that H is of prime order, and hence solvable. On the
contrary, if H is not simple, then let

1=Hy]H,<H,1...]H,=H

be a composition series for H. Each factor group H;,1/H; is a simple
group of odd order, and so our hypothesis would imply that it is abelian
of prime order. Thus, we have a normal series for H in which each factor
group is abelian. Therefore, H is solvable.

6. For positive integers m and n such that n | m, consider the map

o(myn) : Up — U : [l 27 [2]0.

(a) Show that ¢(m,n) is a well-defined homomorphism.
(b) Find Ker ¢(36,12) and Im ¢(36,12).
Solution. (a) The map ¢(m,n) is well-defined, for if [z],, = [y]m,

then
mlr—y = nlr—y = [v]p = [yl

Furthermore, ¢(m,n) is a homorphism, because
p(m, n)([z]m[ylm) = ©(m, n)([zy]m)
= [my]n
= [#]n[yln
= (m,n)([z]m)e(m, n)([z]m)-
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(b) Since for any positive integer n, ged(n,12) =1 = ged(n, 36) = 1,
we have that (36, 12) is surjective. Hence, Im (36, 12) = Ujy. More-
over, Ker¢(36,12) comprises all elements in Usg that are congruent
to 1 modulo 12, and these are precisely, {[1],[13],[25]}. Note that
Ker ¢(36,12) = Zs.

. Show that Aut(Dg) = Dg. [Hint: First, use the fact that an automor-
phism preserves order of an element to show that |Aut(Dsg)| < 8. Then
realizing that Dg < D, consider the action Dig ~° Dg.]

Solution. From class, we know Dg = (r, s), where o(r) = 4 and o(s) =
2. Hence, any ¢ € Aut(Dsg) is completely determined by ¢(r) and ¢(s).
Furthermore, as isomorphisms preserve order, we have that o(p(r)) = 4
and o(p(s)) = 2. So ¢(r) € {r,r*} and ¢(s) € {s, sr, sr?, sr*}, which
shows that |Aut(Dsg)| < 8.

The subgroup (r?,s) of Dy is isomorphic to Dg (why?), and further-
more as [Dyg : Dg] = 2, we have Dg < Dyg. Consider the action
D1 ¢ Dg, and the induced permutation representation

wc : D16 — Aut(Dg)

with Kert. = Cp,,(Dg). Note that Cp,,(Dg) = {1,r*}, as these are
the only elements of D¢ that commute with both r? and s. Thus the
action

Aut(Dg) = D16/{1, T‘4} = Dg,

as there is a surjective homomorphism
vl D16 — Dg

with Kery = {1,r*}. (What is 77?)



